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PREFACE

Robert M. Hamilton constructed the computer codes and raan ali of the

problems presented in this report. William Wortman and Kenneth Smith

independently verified the calculation of the initial slope of the transverse

current.
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SECTION 1

INTRODUCTION

The theory of the electromagnetic pulse (EMP) from high-altitude

nuclear bursts was first developed in a series of lectures (Reference 1)

given by this author at the Air Force Weapons Laboratory (AFWL) in January

and February 1964. The essential part of the theory is that Compton recoil

electrons, produced by the prompt gamma rays from the burst, are deflected

by the geomagnetic field from the radial direction to a direction perpen-

dicular to both the radial vector and the geomagnetic field. The transverse

electric current so formed generates an outgoing EM wave which maintains

coincidence with the gamma pulse and (therefore) with the Compton current;

as a result of this coincidence, a large-amplitude pulse is built up, with

duration (several tens of nanoseconds) determined by Compton electron

dynamics. This short duration is in marked contrast to that of the EIJP

radiated by the radial Compton current, which is determined by the size of

the source region (hundreds of kilometers) and leads to a smaller amplitude.

In Reference 1 the author derived the basic equation of the out-

going wave approximation,

+ -1E - 1J (0)SZ •÷2 Et 2 "

. 5-Here r is the radial coordinate (but with the gaaw pulse treated as planar),

4- Et is the transverse electric field, Jt is the transverse Compton current

jdensity, a is the electrical conductivity induced in the air, and s 377S0
ohms is the impedance of space. The factors 1/2 occur because only outgoing
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(and not ingoing) waves are generated with substantial amplitude. The

equation says that, as r increases, 1't builds up in the direction of -Jt.

but is attenuated by the conductivity. The retarded time t-r/c enters

Fquation 0 only as a parameter; that is, the equation deals with E t and t

at a constant retarded time. Sample Compton currents and conductivities

were calculated in Reference 1, and the solution presented. A general

discussion of the character of solutions was given, along with a discussion

of the effect of diffraction, which explained why the solution of an

equation along a single ray gives correct answers for a three-dimensional

problem.

In largely independent work only slightly later than this author's,

William Karzas and Richard Latter developed virtually the same theory (Reference

2). These authors chose to work in spherical coordinates, in which the

derivative Ft /;r in Equation (0 is replaced by D(rEt )/r3r, and they developed

approximate analytical formulae for the Campton current, the conductivity,

and the resulting field. There has been no important disagreement over the

basic theory of the high-altitude EMP since 1964.

For a couple of years after the birth of the theory, Karzas and this

author provided analytically-based estimates of the high-altitude EMP to

military systems planners. Then John Erkkila of ARWL, working with consulta-

tion from Karzas, constructed the computer code HEMP which essentially

mechanized the analytical models developed by Karzas and Latter. This code

made it possible to produce EMP environment information easily for many burst

heights, yields, and observer locations, and it was the principle source of

such information for several years.

The analytical models contained quite a few approximations. In

1971, Jerry Longley and this author undertook, with support of the Defense

Nuclear Agency (DNA), to develop a computer code with more accurate modeling

of the basic phenomena. First, by solving the equations of motion of sample

Compton electrons simultaneously with the solution of Maxwell's equations,

6
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we obtained (Reference 3) the effect of the ElMP fields on the Compton ,'irrent

(self consistency). Second, we developed a method, called the obliquity'

factor method, for treating the effect of multiple scattering of Compton

electrons by air atoms (Reference 4). Third, we developed a method for treat-

ing the finite time required for secondary electrons to complete their

ioni-:ition (Reference 5). The code which embodies these improvements, and

others, is called CAMP (Reference 6). The AFW1. codes ChuMAP and hIFMIIP-B

employ the same methods, and most of the current high-altitude EiMP environ-

ments are computed with one or another of these codes.

Recently (Reference 7), William Sollfrey has calculated the effect

of multiple scattering on the Compton current by a new method developed by

him, and has raised questions about the basis and the accuracy of the

obliquity factor method.

In the present report we explain the basis of the obliquity factor

method, and test its accuracy against Monte Carlo calculations. We shall

see that it is quite accurate. It is, in fact, more accurate than we had

expected.

We also compare with Solifrey's calculations and find, to our dis-

appointment, that his method does not apparently provide accurate answers

for this difficult problem of multiple scattering. We are therefore left

with having to rely on the Mionte Carlo calculations for accuracy standards.

7i
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SECTION 2
PROBLEM DEFINITION

The prompt gamma rays from a nuclear burst are emitted in a few

tens of nanoseconds. For a burst far above the atmosphere, the gamma rax's

at time t after the burst lie within a spherical shell of radius ct tc is the

speed of light) and with thickness of the order of 10 meters. The downward

going part of this shell begins to interact with the ;tntosphere at an

altitude of about 50 km. By 30 kim, where the gamma scattering length is about

equal to the atmospheric scale height h ;I 6.7 kin, of the order of one-half

of the gammas have been scattered by the Lonipton scattering process. bY

20 kin, only about 1 percent of the gammas have not been scattered. The

dominant source region for the high-altitude EMP lies between 20 and 40 km

altitude.

The mean scattering angle (s of the gammas is of the order of

30 degrees. Hence in the interval before a second scattering of a gamma

occurs it will fall behind the unscattered gammas by a distance )dl-cosf)

0.13 A s- 1 km. The scattered gaaur,- therefore occupy a much thicker shell

than the unscattered gammas, and tcikc flux of scattered gammas is very small

compared with that of the unscattered gammas in the thin shell occupied by

the latter. For the first hundrqvd nanoseconds of thu FJ4P, the previously

scattered gammas can be ignored.

The motion of Compton recoil electrons is limited by their Larmor

radius in the geomagnetic field, and by energy loss in the air, to distances

of the order of 100 meters from their birth place. Over this distance one

can, with little error, consider the gamma shell to be planar, the gammas

8



pa'ra I I , anld tlý I intensity constant in Space at a given retardted time

-I t - l)
t

Ik-rt- ue have usi'•, thle Cartiesian cuordii;itt- z instecad of r a% the (lar gel

dfi t; lale from the !)ba1"st point, (Of' c o.- rse-, ofnc.e he hlave gont. to (Ca'rit .v.i lii

,)-(II'dinlitrd, Wt. k :11 'i ht ost. the or-igilg of z arb it iral'ily.) "I Ih s ,)ve r thhe

region of :spacet of interest in cal~ itl a kI tuin - (: ompjton cuzrrt'n we canl regard

the gaina flux F 1as being a fuuniction of T alone,

I = Fi IT) . (2t

Since the air density anti geomagnetic field are also very nearly .-onstant

over 101) meters, the Compton current density, the air conductivity, and the

LMNi fields are also, to good --pproxintation, functions of the retarded time

alone over the range of the Compton electrons. This approximation greatly

simplifies the problem of calculating the Compton current and the [-I..P.

The [-MP fields affect the motion of the Compton electrons. Thus

for an accurate calculation it is necessary to solve Maxwell's equations for

the fields simultaneously with the equations of motion of the Compton electrons.

Since the combined problem of particles and fields is nonlinear, there is little

hope of solving it accurately by analytical means for general cases; we are

reduced to using numerical methods.

In considering numerical methods. we have to choose between dealing

with particles or with a distribution function, i.e., between solving Newton's

laws or the Boltzmann equation. In the Boltzmann equation treatment, the

distribution function will be a function of four variables: T and the three

components of electron momentum. The fine gridding of momentum space re-

quired for accurate solutions makes this method generally more time consuming

than particle methods. (We do not want to rule out the possibility of

inventing a clcvcr aethod for reducing the number of grid poitta rtquired.)
&
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cac:~ ily about a 30i percen;t reduct ion of thle pe.Ak Comnpton cuirrent at

ill Ikm alt it ude whli ch is thek- cenlter of thte L.-1P source: reyion and the placwe

where. the lajrges-t iL1P is generated. Thus there is hope that an app~rox imate

ii.t hcod ofj inc Itid igp scatteriny could give answers accurate to,* say, 10 percent,

whichi %%uld he: adequtate. 'Jo this end we invented the ObliqUity factor

method . It includes the effect of electron scattering lwithout List of random

nlmhr
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SECTION 3

COMPTON SCATTERING

The toimpton recoil electrons (Reference 8) are p1 )oducLd in

collisions of the gamma rays with electrovns in the air atoms . In such a

collision, the galmma is scattered to angie 0 from its original direction

(see Figure 1), and the electron goes off at angle qj. The initial and

final gannma directions and the electron direction lie in a plane. The azimuthal

angle of this plane, or, to he specific, of the scattered gaminms, ablout the

oriiginal gamma direction is denoted by j). We neglect tihe effect of binding of

the electrons in the atoms, which is believed to be small.

We shall use the convenient relativistic notation in which

y = photon energy/me2 = photon momentum/mc

: = electron total energy/meC (3)

p = electron momentum/me

4 x

Figure 1. Geometry of Compton scattering.
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IHere m is the electron rest mass, and c the speed of light. From energy

and momentum conservation one can determine the dependence of y' and r. oin

y and 0:

y' Y (4)

2
+ = 1 + y - = 1 + ()

1 + Y

where

x I 1 cosa , 
0 : x •X 2. (6)

Oie also finds the z-component of electron momentum

Pz Y - y'cos = y(l+y) x- . (7)

1 + YX

T'he additional relativistic relations,

S,8)
c= p + 1

-- = etc. ,(9)
C p

are also useful. In Equation 9, vz is the z-component of electron velocity;

similar equations hold for the other components.

The probability of scattering to angle 0 is given by the formula

of Klein and Nishina. The differential cross section of an electron for

scattering the gamma into solid angle dQ2 at 0 is

r2 d 2 2cy(O)dfl = 2! 1 ++,X 2-X I+i _(0

Here e 2/mc2 is the classical electron radius, where -e is the electron

charge (cgs units). The element of solid angle is, after integrating over 4,

12
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d'i = 2rsin0dG = 2ndj, I I)

The total scattering cross section per electron is obtained by integrating

Equation 10 over X, and Is

S-r- 7iro Il(Y) , (12)

where

2(2+y+9y 2+y 3) 2 + -2

1'1 y 2(+2y) 2 3

For the gamma flux given by E-quation 2, the total source density

of Compton electrons is

ST(T) = NZoTIFY(T) (14)

ltere N is the density of air atoms and Z = 7.2 is the mean atomic number of

air.

13kf° I
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SECTION 4

THE BOLTZMANN EQUATION

We originally derived the obliquity factor method by considering

particles ra ..er than the distribution function. Since that derivation

apparently left something to be desired in clarity, we shall derive it here

from the Boltzmann equation. Let f(r,p,t) be the density of Compton

electrons in the six dimensional phase space of coordinate r and momentum p.

The six-dimensional velocity of the particles in phase space near the point

r,p is r,p, where the dots indicate time derivatives of the particle

qluat ities:

r = v = three dimensional particle velocity, (15)

p = force on particle at r,v (16)

Part of the force comes from the electric and magnetic fields. We shall

also imagine that a resistive force acts on the Compton electrons, to account

for their gradual loss of energy to other electrons in air atoms. The

scattering of the Compton electrons by air atoms will be treated as a

separate, scattering term in the Boltzmann equation.

The six-dimensional current of particles in phase space is (rp)f,
and the six-dimensional gradient operator is (V rV p) where the subscripts

indicate whether the three-dimensional gradient operates on coordinate or

momuntum space variables. The six-dimensional divergence of the six-dimensional

particle current is

14



v v r P

Here the order of V and v can be interchanged because v is a function ofr
the momentum variables (see Equations 8 and 9), which are independent

-44
variables from r. The order of V and p cannot be interchanged because of

the resistive force which depends on p in such a way that V p 0.
Ip

The conservation of particles is expressed by the Boltzmann

equation,

Vff÷ (pf) S P p (18)
S+ v Vrf + pP)f(P)d

Here S is the source density of Compton electrons in Compton collisions,

and the integral with K is the scattering operator, which takes particles

out of momentum p' and places them at momentum p.

It is important to realize that the Boltzmann equation is completely

equivalent to Newton's laws of motion. If we start with an f which is a sum

of delta functions, each singularity representing a point particle, and solve

the equation forward in time, then the delta functions will be preserved

and they will move exactly as particles would under Newton's laws. To make

this work, the source S and the scattering operator have to be regarded as

stochastic operators, which occassionally inject additional point particles

or scatter point particles from one momentum to another. On the other

hand, one can regard f as a continuous function expressing the probability

of finding a particle near r,p, or as the density of particles.

We have seen that it is a good approximation to treat the source

S as depending on r and t only through the retarded time,

• • ~15""'
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S = S(t-c,p) PS(T,) . (19)

With this source, the Boltzmann equation and Maxwell's equations allow

solutions which are functions of T alone. On substituting

f = f(t -c, P) (20)

into the Boltzmann equation we find

Sf f 3

DT(1 0- f + *(pf) = S + Kfdp (21)

Ifere the factor (1-v z/c) can be placed on either side of the retarded time

derivative. We can make this equation look more like a standard Boltzmann

equation in momentum space by introducing a modified distribution function

F(T,p) = (I --- )f f F f22)
0 - z

c

Then Equation 21 becomes

+ V * ('F) = S(T,p) + JKFd (23)TT p -

where

P d(24)
V dt'

C

Now from Equation I we find that if we move along with a particle,

V

dT a (1 - --)dt (26)

so that

* ,,•d(27)

16



The interpretation of K* is equally simple. The scattering kernel K contains

a collision rate and an angular distribution. Equation 2S shows that the

collision rate in retarded time is increased by the retarded-time factor

l/(l-v'z/). Particles that move forward with v close to c are acted uponz z
by forces and scattering more quickly in retarded time, because the real

time interval is longer for these particles than the retarded-time interval.

Note, however that the source S does not acquire, the retarded-time factor.

We can go immediately from Equation 23 to a completely equivalent

set of point particles. We create particles according to the probability

distribution in S(T,p). The momenta of these particles change at the rate

d = 1 x usual forces (28)
dT v

c

and they scatter at a rate increased by a factor 1/(1-v z/c) over the usual

rate, but with the usual angular distribution. In adding up the current

densities for these particles, we multiply the contribution of each particle

by a factor 1/(l-v z/c) because that factor occurs in the relation (22)

between the true f and the modified F. This is the method used in CHAP,

except that we also treat the scattering approximately, as we discuss later.

The physical explanation of the retarded-time factor appearing in

the current contribution of each particle was given in Reference 3. It is

that, for two Compton electrons born at places with z-coordinates differing

by AZ0 and having identical (but displaced) trajectories, the actual

distance apart of these two particles at any given time is AZ = AZ0 (l-Vz/C)

as indicated in Figure 2. The density of electrons is therefore greater

than the density of births by the retarded-time factor.

17
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Electron

Trajectories -Krrajectory of

Ganmma Pulse

ct AZ

IAAZ 0Z = AZo(l-Vz/C)

AZZ
z

Figure 2. Explanation of retarded-time factor appearing in the current
contribution of each particle. Relation between AZ and AZ0
holds in the limit as AZ0 - 0.

We hope this discussion of the retarded time equations will clear

up any doubts for both those who prefer the Boltzmann approach and others

who prefer the particle approach.

i

rr
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SECTION 5

INITIAL VALUE OF COMPTON CURRENT

For a delta-function pulse of gamma rays, we can calculate exactly

the initial value of the radial Compton current. Also for the transverse

Compton current, which starts from zero at T = 0, we can calculate exactly

the initial rise rate. These two quantities are not affected by either

energy loss or scattering.

The contribution of a given electron to the radial Compton current

is proportional to

V /C I)

a= 1-v/c c-P =Y(I+Y)x. (29)

Let us imagine a magnetic field B in the y-direction (see Figure

1), which will lead to a current in the x-direction. The contribution of

a given electron to Jx is proportional to
x

Vx/C Px

J v _ _ _E- px (30)

The average of this expression over the Klein-Nishina distribution vanishes

by symmetry. The derivative with respect to retarded time is

S0 Px PX ;zsix - + (31)

pz (c-p )2

The result of the resistive (energy loss) force and of scattering would be

$ 19



to keep the distribution symmetrical in the angle 4 about the axis formed

by the original gamma ray direction. Therefore they' do not contribute to
a

the average of ,J . Only the magnetic force will contribute. (we assume
A

here that there is no electric field, although we could also calculate its

effect.) For the magnetic force,

0 eB V z/C eB PZ

0 ellB x/C CB Pxe

Pz = -- m v - !c a C Pz

We then calculate

(32

B PzP
ax e -2 x 3 x

p(- Z) 7r pz

Now when averaging over the angle t,
r y 1 { 2.

av(p 2 av(p 2) = - av x 3y)
x in [cp 2  (c- Y

I a v ( c _ -p 2 f 4

z

Thus when averaged over hwe obtain

S eB I I - (C-pZ)2

2J = a~ 2  1 2

x M 2 (C2p(
z

-eB 1 [('X3 (351- (c- (l+xp)

To find the initial value of J z and J x# we have to average

Equations 29 and 35 over the Klein-Nishina distribution in X, Equations 10

and 11. This averaging is straight forward, if a little tedious. The

i ~results are, in MK(S units:

20
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J z(0) = - N0 ecT z(y)/T 1 (y) , (36)

J x(0) = No0ec -W)Tx(yf)/'rl(Y) .(37)

Hlcre N is the total number of Compton electrons produced per unit volume,

T- is given by Equation 13, and

Tz= (l÷[2 (2Y)_2 6+2 3 + . 4 9n(]+2Y1 J (38)
(l+2y) Y 'Y

T (1+2Y)2 1 + y + I I + 2y•-n(1÷2Y) (39)
x 3 y(l+2y) 2 2y3

y 2y

For comparison with later numerical calculations we record here values for

gamma rays of energy 1.6 MeV and a magnetic field of 0.6 Gauss = 6 x 10-

Weber/m2 :

- .z (0)/ (N 0 ec) = 7.70 , (40)

oeB 8
-ix(0)/(N ec) = 26.S4 - = 2.80 x 10 /sec . (41)

To obtain the results (36) and (37) in cgs Gaussian units, replace

ec by e, and eB/m by eB/mc.

For a given flux of gammas, N0 is itself proportional to Ti, so

that Jz and J x are proportional to Tz and Tý. Graphs of these quantities

versus gamma energy are given in Figure 3.

I.
I-
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SECTION 6

ENERGY LOSS

For energy loss by the Compton electrons we use Bethe's formula

(Reference 9). The mean change of energy dW per track length ds is
2

2 ds = 2 0NZr [ (422
me p

iHere N is the density of atoms of atomic number Z, r 0 is again the classical

electron radius, and

Xn(mc21 2 (c:-1)p2 (2 _1U

[1] = [222 - -

+ •. -1 (43)

In this equation, I is the mean excitation potential, given in Reference 9

for various elements. For air and aluminum:

air: Z =7.2 1 = 80.5 eV,
(44)

At: Z =13 , = 150 eV.

To save computational time, we approximate [1] by

([1] 2Ln(-I + 3.421k(p) - 1.71 (45)

S15.80 + 3.42ta(p) for air , (46)

a 14.57 + 3.429n(p) for At . (47)

23
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I hi i ap)p|Oximat iol i.s accu'; Ite to I percent for el ct ron k. iiet tic curt r,, ic

between 27 keVuV and 5 '4eV.

In the CUM' method we imagine that a steady force equal to dW/ds

:ic i - on t hc Compton electron, in the direct ion opposi te to its velocity.

Thu, th, unergy of the electron decreases gradually at the correct averag;e

raIe. Ihis treatment ignores the fact that the energy loss occurs in steps

of fluctuatinhg mMaguaittide. 'fhe probability distribution of energy woss

is given approximately by

w dw
1'(w)dw }• - (48)

wo + w

where w is of the order of 10 eV. The average energy loss per illelastic

collision is

2w IO. 2 t-,,

60 eV for W = I MeV . (49)

Thus the average step is very small compared with the energies W of the

Compton electrons. However, since the integral of wP(w) gives a logarithm,

roughly equal amounts of energy are lost in each decftde in w; e.g., about

1/5 of the energy of a 1 MeV electron is lost in collisions that lose energy

between 50 and 500 keV. Thus large energy losses are not totally negligible.

We shall see, however, that at the center of the high altitude F-MP source

region (altitude - 30 km), energy loss has only a small effect on the peak

Compton current. It is unlikely that fluctuations in energy loss could

cause changes in the peak current of more than a few percent.

In CHAP. ion pairs are created at the rate of on6 ion pair per 85

eV lost by the Compton electron. Secondary ionization then proceeds at the

rate given in Reference 5, until there is one ion pair per 34 eV lost by.

the CoWpton electron.
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SECTION 7

COULOMB SCATTERING

The di fferlent ia I cross sect ion of a mcle Is oflch,,. O c 1 e for

scattering an ellectron into angular interval dO at angle C from its original

direction is (Reference 9)

d o , = .4 7 - -• 2 1 2 2 ,,- i_•• i -U• d O•( .

P q

Hexre q Eis rop)OlIt iola I to tile onentimlln rhalglve

= i '~) (1) 4 2)

Note that the differential solid angle can be expressed in terms of q,

'U 0

dq• = 2adq = 4sin(T)cos(T)dO 2sinOdO . (52)

Thus

2 20 2•2 2
S44

p o~

The total cross section, obtained by integrating over q, is infinite, since

even distant collisions lead to some scattering for a pure Coulomb potential.

Itowever, screeaiing of the nucleus by the atomic electrons reduces the scat-

tering for large impact parameters. A good way to take into account the

effect of the screening is to make the replacement
4
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1 1
-* - (S( 4)

2 2 2'
q a +q

where a is effectively the minimum angle of scattering. Moliere (Reference

10) found a good fit to the scattering from the Thomas-Fermi atom by adding

three terms of this form with different a's and different coefficients re-

placing unity in the numerator. We have picked a single value of a which

gives the same result as Moliere's formulae for the following problem (which

will be used in the next section).

We wish to find the integral over the differential cross section of

the quantity

2(0) 1 2
1 cose = 2sin (- 1 q (55)

rhis integral is

2

l-cosO)do = 47rZ 2r0 c aq2I2

S4•Z~4

In the cases of interest to us, a 2/4 will be very small compared with unity,

so that we can approximate

a n( 2 1( 21q

-1 En (56)

4

Using Moliere's formulae, one can again do the integral of (l-eose), with

considerably more work. The result i~s

2

l-cose)du - 4 a2] n( ) 2. c 1.1 (58)

Jp z

26

i --- - - .



(The number 102 inside the logarithm here replaces 137 = kc/e/2 in less

accurate calculations of Coulomb scattering.) Comparing thie Noliere result

with Iquations 56 and 57, we see that they will agree if we choose
41/3

.84 p ~(59)

We shall use the Moliere result (58) directly in the obliquity

factor method drived in the next section. We have also used the differential

cross section (53), with the replacement (54) and with a given by (59), to

construct a Monte Carlo code for the purpose of testing the accuracy of the

obliquity factor method. That code will be described in another report.

One often sees formulae like Equations 53 and 58 with Z2 replaced

by Z(Z+l), for the alleged purpose of including the effect of scattering by

the atomic electrons. This procedure may he approximately correct for the

larger angle scattering (although it neglects the reduced-mass correction),

but it can hardly be correct for the small angle scattering, where the

atomic electrons are already taken into account in the screening. Possibly

some form like Z(Z + I-) might be appropriate. Since the correct procedure

is apparently unknown, we leave the factor Z- in place.
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SECTION 8

THE OBLIQUITY FACTOR

In Section 4 we derived the modified Boltzmann Equation 23 in

retarded time and momentum space. This equation conserves particles in

momentum space (whereas Equation 21 does not) and is directly equivalent to

a set of particles whose accelerations and collision rates are modified by

the retarded time factor. This equivalence is exact if the scattering

operator is regarded as stochastic. We now derive an approximate, non-

stochastic way of handling the scattering of the Compton electrons.

We consider first the case in which there are no forces (and no

energy loss) and only scattering is acting. Then Equation 23 becomes

P(~) F(p,) d

? - v' p' (60)3T pV Z/c

If we start with a particle with momentum p0o then F is initially a delta

function

FO(j) - 6p-po)

As time goes onl, F(p) will spread out in angle around -0' but with no change

in the magnitude p - p0. The initial angular spread will be small because

the scattering is predominantly small-angle. Therefore the factor (l-vl/c)

will vary only little over the distribution F('l) at early times, and may

be replaced by its average value over that distribution. We thus write
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Fp) 1 - iK(p(,p')F(p',)dp (61)

where the average v is a function of T but is independent of p and p'.z

In this approximation the central angle of the distribution does

not change from the angle of pO. Let us calculate the rate of change of the

quantity p defined by

P- fc oscAF(p)d p , (62)

where c is the angle between p and PO. Multiplying Equation 61 by cosrh and

integrating over p, we find

d= 1 •vz fc oso, K(p,) F(p')d 3p'dp . (63)dT z -z/C f e P

In the integral over p, which we do first, we can choose p' as the axis

of spherical coordinates. Then

cost = cosOcosR - sinOsinflcos4' , (64)

where the angles are defined by Figure 4. Since K is a function only of the

scattering angle 6 and not of 4, the second term on the right in Equation

64 gives no contribution, and we have

dT 1 rcos$F(P')d3Pt osOK(0)2tsinodO (65)

at J

¾.0j

Figure 4. Angles for integration of Equation 63.
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In these variables, the second integral is independent of p and the first

integral is vi. Thus

dwd 1 -_z/C_ cosOK(0)27rsinod. (66)
dY i - v/c Jf

Now the scattering operator K removes particles from 0 = 0 (i.e., it contains

a term -6(6)), and puts them at other angles 0 > 0. Since it conserves

particles, we have

fK(o)27rsinOdO = 0 . (67)

We can therefore write Equation 66 as

!4 =W (l-eosO) K(6)2sin dO (68)
dT 1 - Vz/.

Since 1-cosO vanishes at 0 = 0, the delta-function part of K(O) gives no

contribution to this integral, and K can be replaced by the differential

scattering cross section of Section 7, multiplied by Nv to give a scattering

rate. Wc thus obtain, from Equation 58, and noting that

v 0 C (69)

the result,

1 d 1 4 Z 2 c 0
4-nN r I 3)(70)
0 3

A group of particles starting out with velocity

v aC- (71)
0V £

will have an average velocity, as a result of scattering,

V a Vo& . (72)

This reduction in velocity affects the current densities and the relation

between real time t and retarded time T for this group of particles. It

3 .
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does not affect the ionization rate directly, which depends only on the

magnitude of the momentum.

Let us now turn on the electromagnetic and resistive forces. Now

the magnetic force rotates all of the momenta in the slightly-spread distribu-

tion (resulting from scattering) about the magnetic field axis; this changes

the central angle of the distribution, but does not affect the angular

spread p. The resistive force reduces the magnitudes of all the momenta,

but also does not affect p directly. The electric force changes the

components of all the momenta in the direction of the electric field; this

changes both the central momentum and the angular spread, as explained in

References 3 and 4.

We thus arrive at the obliquity factor method. It assigns a

central momentum p to each particle, which is the momentum it would have

in the absence of scattering. Associated with p in the usual way are the

total energy c and the central velocity v. The equation of motion in

retarded time is

41 x usual forces. (73)

dT v
1 - c

The equation for v is Equation 70 (when E 0) with

TVz = VZIJ " (74)

Scontribution of a particle to the current density is proportional to

cV e. (75)

Since p~ starts from unity at T 0, it can be seen that scattering does not

affect the initial value of JIand that it does not affect the initial value
ofdjT/dT (for a magnetic field In the y-direction).

X
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To the extent that scattering is dominated by small angle scatter-

ing, it is clear that the obliquity factor method should be asymptotically

correct at early times, i.e., it should give the first order effect of

scattering correctly. High accuracy at late times is not expected a priori,

but we shall see what we get in the next section.

In earlier discussions of the obliquity factor method we used,

instead of W,

n 1/i , kn -- nt (76)

The equation for r is therefore

1 dij
C T = n x RHS (77)

where RHS is the negative of the right-hand side of Equation 70. In our

early work we dropped the factor n on the right in Equation 77, on the

grounds that the model is valid only when n is not far from unity. This

method, without the factor n, is called the "old method," whereas Equations

70 and 77 are called the "new method." We shall compare their relative

accuracies in the next section.
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SECTION 9

COMPARISON OF RESULTS

To test the accuracy of the CHAP method of computing Compton

current, we shall compare its results with those from Morte Carlo calcula-

tions. In another report we shall describe two types of Monte Carlo calcula-

tions of different complexity. The simpler calculation treats all scattering

as small-angle, using a Gaussian angular distribution of scattered particles;

the width of the Gaussian is determined from the total scattering. The more

sophisticated calculation divides the scattering into a small-angle part

and another part not limited to small angles. The small angle part is as-

signed a Gaussian distribution, whereas the large angle part is given the

screened Coulomb distribution. The sophisticated calculation is considerably

more time c6nsuming. We have used both methods to calculate the transmission

of monoenergetic electrons through aluminum foils of various thicknesses,

and have compared the results with the experimental data of Marshall and

Ward (Reference 11). The results are shown in Figure 5. The two Monte

Carlo methods give ranges, for a given transmitted fraction, which differ

by not more than about 5 percent. The experimental results are very close

to the Monte Carlo results for small foil thickness, but show ranges up to

10 percent larger for large thickness (low transmissions). We do not know
what the absolute accuracy of the experimental data is, as Reference 11 gives

no assessment of probable error. Spread in energy of the incident electrons

would hake the tails of the experimental curves extend to longer ranges. In

addition, crystaline effects in the aluminum foils are not accounted for in

the theory of multiple scattering, which assumes that the scattering atoms
are randomly placed. This effect would not be present in air. Altogether,
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the agreement is quite good, and we shall assume that the sophisticated

Monte Carlo represents the correct effects of multiple scattering and energy

loss. Since the simple Monte Carlo gives results differing by only a few

percent and is considerably faster, we have used it to compare with the CHAP

method.

All of the calculations were done with gamma rays of energy 1.6

MeV and for a transverse magnetic field of 0.6 Gauss. No EMP fields (self

consistency) were included. Two altitudes were used:

altitude = 30 km, air density = 1.84 x 10-35 gm/em3

altitude = 20 km, air density = 8.89 x 10O5 gm/cm3

Figure 6 shows transverse currents at 30 km altitude. The curve

labeled VAC was computed by the CHAP equations but with the resistive force

and scattering set equal to zero. i.e., it represents the case of zero air

density. For the curve EL, the resistive force was turned on, but scattering

was omitted. The curve labeled CHAP includes both effects. We see that

scattering causes a larger effect than energy loss. The curve labeled MC

2. is the Monte Carlo result. It is a few percent larger than the CHAP result

at times of several nanoseconds. We shall see later (Figure 9) that the

ionization rate is also a little larger from the Monte Carlo calculations;

these two errors tend to cancel in determining the peak electric field, which

is proportional to Jx/a (o is the conductivity). We see that all the curves

approach the theoretical slope at early times, although scattering causes

departure quite early in retarded time. The time step used in the calcula-

tions was 0.3 nanoseconds. For the most energetic electrons, the real time

step is about 27 times longer. We see that the difference between the old

and new obliquity factor treatments is small over the time frame presented,

with the old method being a little closer to the Monte Carlo results.
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Figure 7 shows the transverse current at 20 km altitude. Here the

Monte Carlo and CHAP results are very close together at times of interest.

"The old method is substantially too large after 2 / 10-8 second, as expected

since it underestifmltes the scattering when ij is small (or r1 is large). how-

ever, this error would not affect thie peak [MP.

The transverse currents at both altitudes are shown in a linear plot

in Figure 8.

Figure 9 gives the ionization rates at the two altitudes, based on

instantaneous production of one ion pair per 34 eV lost by the Comq)ton

electron. The CHAP code takes account of the time lag for secondary ioniza-

tion, but we have omitted this lag here to better compare the calculations.

(Including the lag would bring the Monte Carlo and CHAP results a little

closer together, since both curves start from the same initial value.) At

30 km altitude, the Monte Carlo result is larger than the CHAP result by a

little more than the error in the transverse current. The computed peak

[NP from CHAP will therefore be a few percent too large.

Figure 10 shows the radial current at both altitudes. The difference

between the Monte Carlo and CHAP results is maximum for this component.

Fortunately, the radial current has practically no effect on the F11P except

at points very close to the burst, where 1IP is usually not of primary con-

cern. The radial currents all start from the theoretical initial value.

t As a final check on the accuracy of our calculations. we compare

in Figure 11 our CHAP results with some older Monte Carlo calculations of

Knutson and Morgan (Reference 12). These calculations were made for 20-ku

altitude. but with slightly different E and 8 from thoge we have been

using. ClAP was run with these revised values. Figure 11 shows quite good

agreement between CHAP and the Knutson-Norgan Monte Carlo. Comparing Figure

11 with Figure 8 (for 20-km altitude), we see that the relation of the Monte

37



IIIn
4v 4

CD u
Ml ' 0

41)~

-p-.~4 4w - :'

.. 4J.

I V u

1- j
:I CL

>-4. ..aj0

#4-8-



(~4-J

- 0 ' 0.0-0

I . . . .. . ., - U•

_:___+___+. -- _ _ _..+ • ._fo ..•.0

* . . j ] : 1 : : -. :: u-- ': -0
(1 cu

I LUI

-4. - :-. -/! .: t:: :•"

° ~ ~ ~ ~ ~ ~ ~ Z C) •--:::- : +
I.-0

. .... .. -~ - .,T-+-4 : , *v3.*-, . . .. . . .. .. tr 4,

I' '• I , t I= -- • • •

• •~- ......... .*O+ 71(. •L,•
$A .. ... , -)

".. : NJ"I

--....- - t , n.E EI
-f -+: 1~ ~-+I... i•- --.- '.- - +'+

*: ... i ... I- C

0. U ý

. .. ... . ..- .

C.3~

TTT~~1 0.

- 4

4 . . .. .1

... ~- ......----- R

I--0

(uetssn") a v/X (SAW) 39ONIXP

39



00 4-

I* I_
0) CC I /

-~19

-o 17 I co

-1~~ tot~
CA 4D

a >
-'a>

_ _ -6

N U

1. . .

HIT!



I-T 7- J-

I0 0

S- 0-- 4-)

I ~4)

CD to

F~~ cz/! I

-F-p--- F- L.

i/l I F j!i

I 1 1 iI~OEL6

-, ~~~~ ~1 ht...4 ~ ...

rup na _____ (x) om2

~r E41



_ _ 4J

I.I

4I c

I IA,

LA.

r .4 .a t Li 0

0 U

(unsshos) *aU,

I4,

42.



Carlo curves to the CHAP curves are nearly identical in the two figures.

This indicates that our Monte Carlo results and those of Knutson and Morgan

are very nearly identical, and supports the reliability of all of the cal-

cl at ions.
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SECTION 10

COMPARISON WITH SOLLFREY'S RESULTS

In Figure 12 we compare Sollfrey's computed transverse currents

with our Monte Carlo results at altitudes of 20 and 30 kin. We see that

there are substantial differences. Comparing with Figures 6 and 7, we see

that the CIIAP results are much closer to the Monte Carlo results than are

Sollfrey's results. This is disappointing since we had hoped that Sollfrey's

calculations wold provide an accurate, independent check on the Compton

currents.

Not having gone through Sollfrey's calculations in detail (they

are quite lengthy), we can neither confirm them nor point to any errors.

We do raise the question, however, as to whether the series, in terms of

which his result is expressed, is convergent or only semiconvergent. In

this connection, we point out that his first term J is closer to our Monte

Carlo results than is his sum J0 + J I J2. and note that in his Figures 9a,

b, c, the series does not appear to be converging, for J is generally

larger than J V It appears that if one more term were added, the result

would be larger than the vacuum current and the theoretical initial slope

at early times. In our view, these points raise serious doubt as to the

accuracy of Sollfrey's results. We would like to sej these questions re-

solved.
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SECTION 1l

CONCLUSION

We have developed the theory of the Compton current in the presence

of the geomagnetic field. We have derived analytically the initial value of

the radial Compton current and the initial rate of rise of the transverse

Compton current (which starts from zero initially). Neither of these

values is affected by energy loss or scattering of the Compton electrons,

and they serve as checks on numerical calculations. We have explained the

approximate but fast method used in the CHAP code for calculating the

Com~pton current, including the effects of energy loss and scattering. We

have devised an accurate Monte Carlo calculation for the Compton current and

have shown that it gives good agreement with experimental data on the trans-

mission of electrons through aluminum foils. We have compared results from

CHAP with those from our Monte Carlo, and have shown that CHAP results are

withini a few percent from the Monte Carlo results. Since CHAP errors in

Compton current and ionization rate are in the same direction and about the

same magnitude, the peak tsaturated) electric field calculated by CHAP should

be within 2 or 3 percent of the correct values. We have shown that our Monte

Carlo results are nearly identical with similar results obtained by Knutson

and Morgan in one case available to us.

We have compared Sollfrey's numerically computed Compton currents

with our Monte Carlo results, and found discrepancies as large as SO percent

at important times. We have suggested that Sollfrey's series may not be

convergent.

Sections I throughO o f this reprt are suitable for incluatsion AArA•
textbook on high-altitude 2W.
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